Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters
نویسندگان
چکیده
This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagrams based on the Hausdorff distance function. The combinatorial complexity of the Hausdorff Voronoi diagram is O(n + m), where m is the total number of crossings between pairs of clusters. For non-crossing clusters (m = 0), our algorithm works in expected O(n logn+k logn log k) time and deterministic O(n) space. For arbitrary clusters (m = O(n)), the algorithm runs in expected O((m+ n log k) logn) time and O(m+ n log k) space. When clusters cross, bisectors are disconnected curves resulting in disconnected Voronoi regions that challenge the incremental construction. This paper applies the RIC paradigm to a Voronoi diagram with disconnected regions and disconnected bisectors, for the first time.
منابع مشابه
A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters
In the Hausdorff Voronoi diagram of a set of point-clusters in the plane, the distance between a point t and a cluster P is measured as the maximum distance between t and any point in P while the diagram is defined in a nearest sense. This diagram finds direct applications in VLSI computer-aided design. In this paper, we consider “non-crossing” clusters, for which the combinatorial complexity o...
متن کاملRandomized incremental construction of the Hausdorff Voronoi diagram of non-crossing clusters
The Hausdorff Voronoi diagram of a set of clusters of points in the plane is a generalization of the classic Voronoi diagram, where distance between a point t and a cluster P is measured as the maximum distance, or equivalently the Hausdorff distance between t and P . The size of the diagram for non-crossing clusters is O(n ), where n is the total number of points in all clusters. In this paper...
متن کاملA Simple RIC for the Hausdorff Voronoi Diagram of Non - crossing Clusters ∗
We present a simplified randomized incremental construction (RIC) for the Hausdorff Voronoi diagram of non-crossing point-clusters. Our algorithm comes in two variants: using a conflict graph and a history graph, respectively. Both variants have O(n log n + k log n log k) expected time complexity and require expected O(n) space, where k is the number of clusters and n is the total number of poi...
متن کاملOn the Hausdorff and Other Cluster Voronoi Diagrams
The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand var...
متن کاملThe L∞ Hausdorff Voronoi Diagram Revisited
We revisit the L∞ Hausdorff Voronoi diagram of clusters of points, equivalently, the L∞ Hausdorff Voronoi diagram of rectangles, and present a plane sweep algorithm for its construction that generalizes and improves upon previous results. We show that the structural complexity of the L∞ Hausdorff Voronoi diagram is Θ(n+m), where n is the number of given clusters and m is the number of essential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.01335 شماره
صفحات -
تاریخ انتشار 2016